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Abstract 
Microbial community analysis is an important field to study the composition and function of microbial communities. Microbial species 
annotation is crucial to revealing microorganisms’ complex ecological functions in environmental, ecological and host interactions. 
Currently, widely used methods can suffer from issues such as inaccurate species-level annotations and time and memory constraints, 
and as sequencing technology advances and sequencing costs decline, microbial species annotation methods with higher quality 
classification effectiveness become critical. Therefore, we processed 16S rRNA gene sequences into k-mers sets and then used a trained 
DNABERT model to generate word vectors. We also design a parallel network structure consisting of deep and shallow modules to extract 
the semantic and detailed features of 16S rRNA gene sequences. Our method can accurately and rapidly classify bacterial sequences 
at the SILVA database’s genus and species level. The database is characterized by long sequence length (1500 base pairs), multiple 
sequences (428,748 reads) and high similarity. The results show that our method has better performance. The technique is nearly 20% 
more accurate at the species level than the currently popular naive Bayes-dominated QIIME 2 annotation method, and the top-5 results 
at the species level differ from BLAST methods by <2%. In summary, our approach combines a multi-module deep learning approach 
that overcomes the limitations of existing methods, providing an efficient and accurate solution for microbial species labeling and more 
reliable data support for microbiology research and application. 
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INTRODUCTION 
Microorganisms hold a crucial ecological niche within natural 
ecosystems, exerting an indispensable influence with profound 
ramifications for terrestrial ecosystems, human well-being and 
diverse industrial applications on Earth [1]. In the field of 
microbiology, bacteria are of undeniable importance. They are a 
remarkable group known for their ancient lineages, unparalleled 
diversity and widespread presence [2]. Nevertheless, this presents 
a complex challenge for the precise taxonomic classification 
of individual bacteria. Traditional approaches to microbial 
classification have relied on morphological and physiological 
criteria. However, this methodology has limitations, including 
subjectivity introduced by the observer’s judgment and experi-
ence and the inherent variability in microbial morphological and 

physiological characteristics. Furthermore, classification is 
limited to the genus and species level because traditional 
methods largely ignore the abundant genetic information and 
evolutionary relationships that underlie microorganisms. 

Modern microbial species annotation methods have evolved 
to overcome these limitations, embracing cutting-edge method-
ologies rooted in molecular biology and genomics. Since the 
introduction of sequencing in 1975 [3], obtaining nucleotide 
sequences from microorganisms has become extremely easy. 
These sequences can be systematically compared to established 
sequences within databases, facilitating the precise classification 
of microbial species at the individual level. However, we must 
recognize that the time complexity of such an approach depends 
on several factors, including the size of the reference database, the
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amount of data requiring taxonomic annotation and the technical 
limitations of the comparison tool used. 

The continuous development of sequencing technology allows 
us to obtain nucleotide and protein sequences. Significantly 
higher throughput and accuracy show that this area has made 
substantial progress. It is worth noting that the sequence length 
has changed considerably. In the past, it was only possible to 
obtain sequences of tens or hundreds of bases, but now it is 
possible to get sequences of >1000 bases. Consider the bacterial 
16S rRNA gene, traditionally divided into 9 variable regions (V1-
V9) and 10 conserved regions (C1-C10). Before the advent of the 
third-generation sequencing technology, we could only obtain 
short areas such as V1-V3, V3-V5 and V4. However, with the intro-
duction of third-generation sequencing technology, researchers 
can now capture the 16S rRNA gene sequence containing about 
1500 bases [4]. The development of this technology not only 
improves the depth and comprehensiveness of sequencing and 
can provide researchers with more comprehensive and precise 
information about microbial communities. 

In addition, the exponential growth in the quantity of sequence 
data poses a significant challenge for species annotation. The 
rapid accumulation of data adds complexity, necessitating more 
precise and efficient classification methods to handle these large-
scale sequence data. Thus, it necessitates an ongoing endeavor 
to refine and develop novel algorithms and technologies to cope 
with the overwhelming amount of data generated by modern 
sequencing techniques [5]. With the constant progress of genome 
sequencing technology, we could obtain more widespread species 
genome sequence information. Such rich data resources con-
tribute to a more comprehensive understanding of the complex 
network of microbial diversity and the different functional char-
acteristics that microbes possess. These developments highlight 
the vital role played by contemporary genomics and bioinformat-
ics in uncovering the mysteries of microbial life on Earth. 

Contemporary microbial species annotation methods can 
be divided into three categories depending on the sequence 
extracted: marker gene-based methods, whole genome sequence-
based methods and methods utilizing protein sequences. 
Furthermore, these methods can be classified according to their 
algorithms, which typically fall into three categories: similarity 
comparison-based, based on traditional machine learning and 
deep learning-based methods. Among these, the most prevalent 
approach is the algorithm based on similarity comparison. 
This method achieves high levels of classification accuracy 
by evaluating the similarity between known and unidentified 
sequences. However, it must be emphasized that achieving 
this excellent accuracy requires a significant time investment 
and heavily relies on accurate and well-developed dataset 
support. 

Beyond conventional similarity comparison methods, explor-
ing novel classification techniques, including traditional machine 
learning and deep learning, can provide additional avenues 
and tools for the more precise annotation and interpretation 
of diverse bacteria within microbial samples [6–8]. Sustained 
research and technological innovations are poised to propel the 
advancement of microbial taxonomy. In turn, it will contribute 
to a deeper understanding of microbes’ critical role in complex 
natural and ecosystem networks. These advances help fully 
exploit microorganisms’ potential for a wide range of applications 
and play an essential role in promoting scientific research and 
practical applications in related fields. 

However, traditional machine learning methods for microbial 
classification have several challenges, one of the main issues 

being the need to manually select different features or use 
different algorithms to generate feature datasets. These features 
may cover gc content, species abundance information and k-mer 
probabilities based on naive Bayes. However, feature selection and 
dataset generation usually require considerable time and effort 
and sometimes even manual construction. As our knowledge of 
microbial diversity continues to expand, more and more species 
are being discovered, making it more challenging to distinguish 
microbes at the species level. In some cases, traditional machine 
learning methods require more feature data to achieve the 
necessary level of analysis. This may lead to the processing 
of high-dimensional data with many samples, increasing the 
computational complexity. This highlights the urgent need to 
develop more efficient and accurate annotation techniques to 
handle increasing microbial sequence data. 

Facing these challenges, current research directions include 
exploring new feature extraction methods, optimizing algorithms 
to reduce computational costs and introducing advanced tech-
niques such as deep learning to improve the effect of microbial 
classification. Such innovative efforts are expected to increase the 
automation of microbial classification and reduce the burden of 
human intervention to cope more effectively with the growing and 
complex microbial data. 

In addition to traditional methods for constructing feature 
datasets, new feature construction techniques have emerged. One 
such approach involves sequential encoding, where nucleotides 
are replaced with distinct numerical values, such as [0.25, 0.5, 
0.75, 1] and other characters like ‘N’ can be substituted with 0. 
Another widely adopted method is one-hot encoding, which trans-
forms nucleotide bases into four-dimensional arrays [9]. Recent 
advances have introduced another popular method of splitting 
16S rRNA gene sequences into k-mers sequences and then treat-
ing that k-mers sequence as a linguistic text, applying techniques 
from natural language processing (NLP) [10]. This innovative fea-
ture construction approach is expected to improve the accuracy 
and efficiency of microbial taxonomy by leveraging contextual 
information embedded in k-mers sequences [11]. 

Deep learning techniques also have made significant progress 
in species annotation methods in recent years, mainly because 
of their ability to model intricate relationships within data. An 
illustrative example of a deep learning-based method is Deep-
Microbes [12], a classification approach tailored to gut microbial 
data. DeepMicrobes utilizes a collection of k-mers, with k set to 
12, for making classifications. Another notable method is BERTax 
[13]. They offer the flexibility to either utilize pre-trained models 
for annotation against specific microbial datasets or to conduct 
model training directly using the designed database. However, 
BERTax adopts a k-value of 3 and demonstrates superior classi-
fication results compared to DeepMicrobes. They illustrate the 
continued refinement and optimization of deep learning methods 
in microbial species annotation, highlighting the potential of deep 
learning techniques to improve the accuracy and effectiveness of 
these methods. 

This paper introduces DSNetax, a novel approach for species-
level classification of 16S rRNA gene sequences. To convert the 16S 
rRNA gene sequence into a numeric vector that a computer can 
recognize, we use DNABERT15 for the conversion, which is based 
on the Bidirectional Encoder Representation from Transform-
ers (BERT) architecture, a state-of-the-art NLP architecture. After 
converting 16S rRNA gene sequences into ‘linguistic texts’ [14], 
DSNetax performs microbial species classification based on this 
unique biolinguistic perspective. This process unfolds through 
carefully designed deep and shallow modules parallel network
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Figure 1. Data flow diagram. We train two different deep learning models using two different datasets, where the Greengenes database is used to train 
the DNABERT model and the SILVA database is used to train our classification model. 

Figure 2. DSNetax model structure diagram. DSNetax is a parallel structure of deep and shallow modules. The deep module consists of four stages, 
each containing, in turn, 2, 3, 2 and 2 Split-Attention blocks. The shallow module has three successive convolution operation (Conv) and Rectified Linear 
Unit (ReLU). 

classification models. The annotation results of bacteria within 
communities obtained using DSNetax show high accuracy at both 
genus and species levels. 

MATERIALS AND METHODS 
DSNetax is based on the ResNeSt [15] framework, which 
significantly improves performance compared to previous models 
without substantially increasing the number of parameters. 
Many downstream applications, such as object detection and 
image segmentation, have achieved excellent results. We 
combine our method, DSNetax, with data processed by sequence 
language models, taking into account both data processing 
and methodology (Figure 1). The overall framework diagram 
of DSNetax is shown in Figure 2, which skillfully integrates 
deep semantic insights while preserving complex low-level 
details. 

Training ‘16S rRNA Gene’ sequence language 
models 
In this study, we adopt DNABERT [16] as our preferred model 
for training sequence languages. DNABERT is a derivation of the 
recent BERT architecture that removes the next sentence predic-
tion (NSP) task while retaining the masked language Modeling 
(MLM) task. The MLM task involves randomly masking tokens 
(words or sentence fragments) in a sentence and then predicting 
these masked tokens. The NSP task allows us to understand the 
relationship between two sentences. While this is valuable for 
downstream functions that rely on sentence relationships, many 
studies have confirmed that for non-two-sentence forms of tasks, 
deleting NSP tasks will improve the performance of downstream 
tasks [17]. 

DNABERT imposes specific prerequisites for processing 
sequences, requiring them to be treated as k-mers sets. Addition-
ally, to facilitate training, five distinct tokens are indispensable:
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the classification token [CLS], the mask token [MASK], the padding 
token [PAD], the unknown token]UNK] and the separator token 
[SEP]. [CLS] is used to indicate the ‘meaning’ of the entire sentence. 
[MASK] masks words that need to be predicted in the MLM. The 
[PAD] represents filling the sentence length to a specific value. 
The [UNK] means the unknown token in the sentence. Moreover, 
the separator marker [SEP] separates two sentences in the NSP 
task. 

Data 
Bacterial 16S rRNA gene sequence language data 
To convert 16S rRNA gene sequences into numerical vectors 
suitable for deep learning classification models, we use the 
Greengenes database to train the sequence language model. 
Although this database may have less content and a slower 
update frequency than alternatives, it boasts superior data qual-
ity. More significantly, it is advantageous in its broad suitability 
for training embedding models, as outlined in prior research [18]. 

Bacterial 16S rRNA gene sequence classification data 
For the bacterial data sets, several prominent databases are 
available, including the Ribosomal Database Project (RDP) [19], 
Greengenes [20], SILVA [21] and EzBioCloud [22], among others. 
After considering factors such as update frequency and sequence 
quantity, we select version 138.1 of the bacterial 16S rRNA 
gene sequence database from the SILVA. This version also 
includes the corresponding microbial annotations. The sequence 
database follows the standard FASTA format, where each data 
entry consists of a Feature ID and the associated 16S rRNA 
sequence. The annotation information database consists of 
two columns. The first column corresponds to the Feature 
ID found in the sequence database, while the second column 
provides taxonomic information in the following format, for 
example d__Bacteria; p__Actinobacteriota; c__Actinobacteria; 
o__Streptomycetales; f__Streptomycetaceae; g__Streptomyces; 
s__Streptomyces_phaeochromogenes. 

Bacterial 16S rRNA gene sequence database 
pre-processing 
In the database we obtain, two critical processing aspects were 
necessary. First, there is a need to handle ambiguous bases. The 
SILVA database contains ambiguous bases and nucleotide bases. 
These ambiguous bases are usually represented by a symbol, 
representing multiple nucleotide bases. An excessive amount 
of ambiguous bases in a sequence, compared to a complete 
nucleotide sequence, can lead to a loss of partial information. 
This situation can lead to smooth fluctuations in feature data 
within a specific range. When converting a sequence into k-mers 
and selecting an enormous value of k, the transformation into 
a numeric vector matrix may result in extended segments of 
unchanged vector values. It is because, in the language model for 
16S rRNA gene sequences, a k-mer that contains such a base is 
usually labeled as a [UNK] tag. 

Second, handling unbalanced databases was essential. The 
SILVA database consists mainly of data provided by the laboratory 
and shared data from other databases. The sequence counts may 
vary significantly among different species, and some species may 
have only one sequence sample. When dividing the database into 
training and test sets, such imbalance may introduce bias and 
potentially result in insufficient learning for certain samples. To 
address these issues, we implemented the following data process-
ing steps: 

Table 1: The number of repetitions of species with fewer 
sequences 

Number of sequences contained in the 
remaining species 

Number of 
repetitions 

1,2 12 
3,4,5 4 
6, 7, 8, 9, 10 2 

Table 2: Comparison of SILVA and Greengenes databases before 
and after preprocessing 

SILVA 138.1 Greengenes 

Number of species 45 738 / 
Number of sequences before 
processing 

428 748 203 452 

Number of sequences after 
processing 

998 503 203 452 

(i) The ambiguous bases of species with 11 or more sequences 
are randomly replaced with nucleotide bases. 

(ii) For species with a small number of sequences (less than 
or equal to 10), we replicated the sequences multiple times 
based on the number of sequences for each species (Table 1). 
We then randomly replaced the ambiguous bases in these 
replicated sequences. 

The results of these processing steps are summarized in 
Table 2, where the number of sequences in the SILVA database 
used for classification model training is more than doubled. These 
measures are essential to alleviate the problem of ambiguous 
bases and unbalanced distribution in the database. 

Bacterial 16S rRNA gene sequence database 
post-processing 
Database split processing 
The next step in preparing the database for training deep learning 
classification models involves the following steps. The database is 
divided into two subsets: a 90% training set and a 10% test set. The 
dataset is split using the stratify parameter to ensure all species 
can be learned and classified. Stratified splitting ensures that 
species distribution remains consistent between the training and 
test sets. It is particularly crucial when there is data imbalance, 
as it helps prevent certain species from being excluded from the 
training or testing data. 

16S rRNA gene sequence conversion processing 
After completing the preprocessing of the database, the next step 
is to transform the sequence data into numerical vectors suitable 
for computer recognition. The one-hot encoding method, which 
has been widely used with significant success in applying deep 
learning to NLP tasks, has two main drawbacks. Firstly, the curse 
of dimensionality becomes prominent, especially when dealing 
with large vocabularies. Secondly, this representation struggles 
to capture word similarities, hindering the model’s ability to 
understand contextual variations. Therefore, word embedding 
technology emerges as a second representation method. 

The core idea of word embeddings is to represent each word 
as a plain vector, which, unlike one-hot vectors, contains actual 
values instead of binary ones. This representation embeds words 
into the mathematical space such that similar words are also
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Figure 3. Accuracy and loss of ResNet (34) model and CNN model. (A): Accuracy of ResNet (34) model and CNN model. (B): Loss of ResNet (34) model 
and CNN model. 

closer in the vector space. While processing the sequence, we 
convert it into a set of k-mers and treat this k-mers set as a 
biolinguistic text. These k-mers are then transformed into word 
vectors using a biological language model, implementing a word 
embedding process in natural language [ 14]. Notably, this trans-
formation approach will better capture contextual information 
in 16S rRNA sequences and provide more affluent and more 
accurate feature representations for subsequent applications of 
deep learning models. 

Microbial species annotation model structure 
In our approach to annotating bacterial 16S rRNA gene sequences, 
we have chosen the ResNet [23] model and its variant, the ResNeSt 
[15] model, as the foundational models. These methods offer a dis-
tinct advantage over traditional methods that heavily rely on fea-
ture engineering. They can automatically learn relevant features 
directly from the data, making them well-suited for large datasets. 
In our DSNetax architecture, we have adopted the ResNeSt net-
work structure, demonstrating superior performance to conven-
tional ResNet in computer vision tasks, especially in image classi-
fication. This improved performance is achieved by incorporating 
a referential split-attention mechanism and multi-scale feature 
integration without significantly increasing the number of param-
eters. 

The core architecture of DSNetax is a parallel structure of deep 
and shallow modules. The deep module consists of four stages, 

each containing, in turn, 2, 3, 2 and 2 Split-Attention blocks, 
a configuration designed to capture global features from input 
data efficiently. In contrast, the DSNetax shallow module is built 
on convolutional neural networks (CNNs). It consists of three 
successive convolution operation (Conv) and rectified linear unit. 
This arrangement is designed to facilitate smoother transitions 
between features in the data set, minimize loss of information 
and capture local features. 

Crucially, the architecture combines the global semantic fea-
tures extracted by the deep module and the local detail features 
captured by the shallow module. This integration aims to create 
a comprehensive overall feature fusion representation, which 
leverages the complete understanding provided by the global fea-
tures while accommodating the nuances and fine-grained details 
captured by the local features. It is central to the success of 
DSNetax in effectively annotating bacterial 16S rRNA sequences. 

RESULTS AND DISCUSSION 
First of all, to verify that more complex deep learning models may 
bring better experimental results, we used the 3-layer CNN model 
and ResNet (34 layers) model to conduct a comparison experiment 
(Figure 3). At this time, we performed 3-mers processing on 16S 
rRNA sequences and converted them into word vectors by using 
the trained DNABERT model. As shown in Figure 3A, although the 
ResNet (34 layers) model maintained a lower state than the CNN
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Figure 4. Comparison of results of ResNet (34) model with different k values. (A): Accuracy of ResNet (34) model with different k values. (B): Loss of 
ResNet (34) model with different k values. 

model at the beginning of training, it quickly catches up with the 
CNN model and maintains a better state than CNN all the time. 
Therefore, complex models can have better learning results. For 
the ResNet (34 layers) model, the model tends to be stable when it 
reaches 30 rounds, but there is still a 1–2% improvement when it 
comes to 60 epochs of training. Consequently, we determined the 
number of subsequent model training to be 60 epochs. 

Then, we find that the training set loss of both models 
decreases during the training iteration. However, the loss of test 
sets drops and then increases. Excessive sequence similarity in 
the data set may cause this behavior. In other words, simple 
networks are very prone to overfitting, while complex networks 
alleviate this situation [24]. Due to the potentially enhanced 
feature extraction capabilities of complex networks, the ResNet 
(34 layers) model exhibits a significantly smaller increase in test 
set loss compared to the CNN model. It shows that the ResNet 
model is more advantageous in dealing with similar databases 
(Figure 3B). 

We already know that complex models can lead to better 
classification. To find the optimal value of k that can improve the 
recognition accuracy of our model, we conduct experiments based 
on the ResNet (34 layers) model. Considering that a small value 
of k may not be sufficient to provide sufficient information, and 
a considerable value of k is too demanding on the configuration 
of the hardware, we chose additional k = 4 and 5 for testing [25]. 

The results are shown in Figure 4. When k = 3, the top-1 and top-
5 results are higher than when k = 4 and 5. However, there is 
little difference in top-1 or top-5 accuracy for different k values. 
Secondly, no matter how much k is set, there is a significant 
difference in recognition accuracy between top-1 and top-5. This 
difference is about 10%, and we believe that distinguishing 16S 
rRNA sequences is a challenging task (Figure 4A). 

In addition, the loss on the training set still decreases and 
then stabilizes, while the loss on the test set decreases and 
then increases. This observation is consistent with the results of 
previous experiments. However, we notice that the test set loss for 
k = 3 is always lower than the loss for  k = 4 and  k = 5 (Figure 4B). 
Therefore, k = 3 can lead to better classification results. 

Although previous experiments show that complex models can 
lead to better recognition accuracy, the problem of overfitting 
and low accuracy still cannot be avoided. Therefore, we chose 
the more complex ResNeSt model for our experiments while also 
adopting our own DSNetax model, the results of which are shown 
in Figure 5. The top-1 and top-5 recognition accuracies of the 
three models are not significantly different, which indicates that 
the three models have essentially the same classification perfor-
mance. However, DSNetax consistently outperforms the other two 
models after >30 rounds of training (Figure 5A). 

In addition, the training set loss of all three models drops 
to zero, indicating that these models have effectively learned
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Figure 5. Comparison of ResNet, ResNeSt and DSNetax model results. (A): Accuracy of ResNet, ResNeSt and DSNetax. (B): Loss of ResNet, ResNeSt and 
DSNetax. 

knowledge from the training data. However, the test set loss 
exhibits a different pattern: ResNet’s test set loss trend is con-
sistent with the previous trend. In contrast, the ResNeSt and 
DSNetax models exhibit similar early fluctuating trends in test 
set loss, followed by a steady decline to 1 in the later period 
( Figure 5B). In other words, the more complex model effectively 
avoids the overfitting problem and achieves better recognition 
accuracy than the ResNet model. Our results highlight the com-
petitive performance of DSNetax, consistently outperforming the 
other two models over 30 training rounds. It demonstrates the 
good performance of DSNetax for 16S rRNA gene datasets with 
high sequence similarity. It also highlights the importance of using 
complex network architectures when dealing with this data type. 
These findings suggest that the final results can be improved by 
increasing the model structure’s complexity to accommodate the 
dataset’s complexity and subtleties. 

Through the previous experimental results, we observe that 
the DSNetax model has achieved superior results in classification 
tasks, directly demonstrating our model structure’s good perfor-
mance. To further explore the influence of different levels of 
shallow module on the classification effect, we conduct further 
experiments by replacing the 3-layer CNNS of DSNetax with 

4-layer and 5-layer CNNS for comparison. For convenience of com-
parison, we name DSNetax with 3-layer CNN as DSNetax+3NN, 
and so on. The experimental results show that the recognition 
accuracy of DSNetax+3NN is always higher than that of the 
other two structures, which further verifies the excellence of our 
proposed model structure (Figure 6). In deep learning, increasing 
layers usually makes the network more capable of extracting 
abstract semantic features. However, our experiments prove that 
the 3-layer CNN adopted in DSNetax is already sufficient for 
the microbial classification task to effectively extract the critical 
detailed features. Further increasing the number of layers of CNN 
may lead to features that are more inclined to the semantic level 
and not conducive to capturing detailed features. This balance is 
achieved between global semantic features and local detail fea-
tures, emphasizing the outstanding performance of the DSNetax 
model on the task. 

The advantage of DSNetax is its deep and shallow parallel 
module structure, and the drive of big data escorts DSNetax. 
Therefore, to explore the impact of data volume on DSNetax 
performance, we split the original training set according to the 
proportion of 50 and 70%, and the result is shown in Figure 7. 
We find that more training data leads to better recognition.
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Figure 6. Accuracy and loss of DSNetax+3CNN, DSNetax+4CNN, DSNetax+5CNN. (A): Accuracy of DSNetax+3CNN, DSNetax+4CNN, DSNetax+5CNN. 
(B): Loss of DSNetax+3CNN, DSNetax+4CNN, DSNetax+5CNN. 

This result indicates that performance can be improved further 
as the available data increases. The bacterial sequences may 
not differ much before and after the variation of variable 
region bases. Therefore, training the bacterial species annotation 
model requires more training data to ensure the model’s 
generalization. 

However, our dataset also presents another feature: the long-
tail distribution (Figure 8). The long-tail distribution refers to the 
scenario where the head categories have a larger number of sam-
ples, while, in contrast, categories in the tail have only collected 
a small number of samples. Figure 8 illustrates the distribution 
of data in the training set and the segmentation positions. The 
vertical axis represents the number of sequences for each species, 
while the horizontal axis represents species arranged in descend-
ing order based on the corresponding sequence counts. Most of 
the data collected in the bacterial 16S rRNA database is typical or 
has been studied many times. Due to the large number of species 
in the database we used, the dataset distribution shows a long tail 
and a steep head. Therefore, according to the long-tail distribution 
of the training set, we divide the test set into two parts, head 
and tail and test the model. We segmented header and tail data 
three times, and the experimental results are shown in Table 3. 

Table 3: Accuracy (%) of split head and tail data at different 
positions 

top-1 top-5 

HEAD (≥ 50 reads) 78.67 96 
HEAD (≥ 100 reads) 81.15 97.06 
HEAD (≥ 500 reads) 86.83 98.8 
TAIL (< 50 reads) 93.03 97.5 
TAIL (< 100 reads) 91.48 97.14 

We choose 50, 100 and 500 as the cutting points (In Figure 8, the  
red, purple and green dashed lines represent split locations at 50, 
100, and 500, respectively). 

In general, the head of long-tail data should have higher 
accuracy, but in our experiment, the accuracy of tail data is 
more elevated. Before splitting the dataset, ambiguous bases in 
high-abundance species (those with >11 sequences, including 
11 sequences) are randomly replaced. But low-abundance 
species (<10 sequences, including 10 sequences), we duplicated 
sequences according to the number of sequences for each species 
and then randomly replaced ambiguous bases. However, the
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Figure 7. DSNetax accuracy and loss on 50%, 70%, 100% of the training data sets. (A) DSNetax accuracy on 50%, 70%, 100% of the training data sets. (B): 
DSNetax loss on 50%, 70%, 100% of the training data sets. 

Figure 8. Long tail data presentation of the training set. The green, purple and red dashed lines respectively denote the segmentation positions at 500, 
100 and 50. 

resulting sequence bases are mostly the same, leading to a 
higher sequence similarity. Additionally, some sequences do not 
contain ambiguous bases, and these sequence data are repeated 
in the samples, potentially causing an excessive similarity 

between the training and testing sets. As a result, samples from 
low-abundance species exhibit relatively high similarity, con-
tributing to the model’s good classification performance during 
testing. 
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Table 4: Accuracy (%) of tools or methods on SILVA database 

Species Genus Time 

DSNetax top-1 89.37 96.26 0.76 h 
top-5 97.12 / 

Qiime 2 / 69.46 97.1 0.87 h 
BLAST / 98.87 99.98 73.83 h 

Figure 9. BERTax model results. (A): Accuracy of BERTax. (B): Loss of BERTax. 

Our method has demonstrated decent annotation accuracy at 
the species level in the final comparison with existing popular 
methods using the divided SILVA dataset. However, at the genus 
level, it appears slightly less accurate than the microbial species 
annotation method integrated into Qiime 2 [ 26, 27]. Meanwhile, 
the BLAST method [28, 29] has demonstrated outstanding anno-
tation outcomes at both the species and genus levels. Qiime 2’s 
method prioritizes annotation speed over accuracy, resulting in 
slightly lower accuracy than the BLAST method. This trade-off is 
often necessary in large-scale microbial annotation tasks, where 
computational efficiency is crucial. DSNetax has demonstrated 
the capability to achieve top-5 results at the species level that are 
broadly comparable to those of the BLAST method. This finding 
suggests that DSNetax represents a promising direction for future 
optimization work, particularly in scenarios where accuracy and 
speed are crucial (Table 4). 

We compared the state-of-the-art deep learning method 
BERTax in our study. However, it has limitations, primarily 
when dealing with large datasets. These limitations arise from 
factors such as model constraints and dataset characteristics. 
For instance, BERTax has a restriction where the input is 
limited to 512 or fewer tokens. As the data lengths from third-
generation sequencing exceed this limit, additional operations 
may be needed to handle longer sequences, potentially leading 
to information loss. Furthermore, the SILVA dataset comprises 
many highly similar sequences, posing challenges for DSNetax 
and similarly for methods like BERTax (Figure 9). 

Overall, this comparison highlights the trade-offs and strengths 
of various annotation methods, offering valuable insights into 
the benefits and areas for enhancement in each approach. It also 
underscores the potential of DSNetax as a competitive method 
for microbial species annotation, particularly when striking
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Table 5: Accuracy (%) of tools or methods on Greengenes and RDP database 

Greengenes RDP 

Species Genus Time Species Genus Time 

DSNetax 72.65 92.17 1 min 85.49 96.11 3 min 
Qiime 2 90.6 98.24 1 min 89.61 99.57 5 min 
BLAST 91.6 99.03 53 min 94.36 99.63 33 min 

a balance between accuracy and computational efficiency is 
essential. 

Unlike the favorable results achieved with the SILVA database, 
our method does not show an advantage over the GreenGenes and 
RDP databases. This discrepancy indicates that the effectiveness 
of our process may be sensitive to the size and balance of the 
dataset. In cases where the dataset is small, extremely imbal-
anced and needs more training data, achieving the necessary level 
of training for a deep learning model can be challenging. Despite 
not outperforming other methods on these smaller databases, our 
method consumes less time. This indicates its potential as a time-
efficient choice for annotation tasks. Moreover, even when applied 
to these challenging databases, our method maintained a certain 
level of accuracy. Such results hold practical value in real-world 
applications (Table 5). 

CONCLUSION 
DSNetax builds a deep learning classification model based on 
a unique biological language perspective, aiming to balance 
annotation time and accuracy in microbial species annotation. 
Our method performs well on top-1 results and achieves almost 
species-level annotation results like BLAST on top-5. However, 
while the concept of 16S rRNA gene sequences as natural 
language is practical, there is still room for improvement and 
fine-tuning in practical applications. Future studies may focus on 
further improving the applicability of this method. 

Second, we observed that larger deep classification models 
showed superior performance. However, they may need to steadily 
show their strength when dealing with small and imbalanced data 
sets. With the challenges of data explosion, especially in the era of 
big data, dealing with extensive data integration becomes an issue 
worthy of attention. Future research could explore strategies for 
efficiently handling large data sets, such as data sampling tech-
niques, distributed computing, or model architectures designed to 
handle large amounts of data. 

We mentioned that combining different feature datasets and 
deep learning classification model to create comprehensive 
approaches is promising. This hybrid approach is expected 
to provide better performance and flexibility in processing 
additional microbial data. Finally, using NLP structures to process 
the long data input of biological language sequences is an 
essential area of future research. This adaptation is necessary 
to ensure that NLP technology can effectively deal with the 
uniqueness of biological sequences. 

DSNetax is a promising microbial species annotation approach 
that successfully addresses the need for a balance between anno-
tation time and accuracy. It simplifies the annotation process, 
improves the species-level classification performance, and opti-
mizes the utilization of computing resources. Our work provides 
valuable insights into the potential and challenges of using 16S 
rRNA gene sequences as NLP. 

Key Points 
• Combining the biological language model with a deep 

learning classification model that can extract deep 
semantic and shallow detail information has improved 
the method for microbial species annotation tasks. 

• The top-5 results of the DSNetax model closely align 
with the BLAST method, indicating a promising direction 
for advancing microbial species annotation. 

• DSNetax can balance speed and accuracy in annotating 
microbial species at the species level. 
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